首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2621篇
  免费   320篇
  国内免费   429篇
  2023年   39篇
  2022年   18篇
  2021年   21篇
  2020年   100篇
  2019年   106篇
  2018年   90篇
  2017年   96篇
  2016年   79篇
  2015年   81篇
  2014年   88篇
  2013年   96篇
  2012年   99篇
  2011年   107篇
  2010年   118篇
  2009年   113篇
  2008年   139篇
  2007年   165篇
  2006年   148篇
  2005年   127篇
  2004年   115篇
  2003年   103篇
  2002年   133篇
  2001年   114篇
  2000年   125篇
  1999年   120篇
  1998年   157篇
  1997年   122篇
  1996年   95篇
  1995年   73篇
  1994年   39篇
  1993年   48篇
  1992年   44篇
  1991年   31篇
  1990年   27篇
  1989年   22篇
  1988年   22篇
  1987年   13篇
  1986年   25篇
  1985年   22篇
  1984年   20篇
  1983年   20篇
  1982年   12篇
  1981年   11篇
  1980年   11篇
  1979年   2篇
  1977年   2篇
  1976年   4篇
  1974年   2篇
  1972年   1篇
  1958年   1篇
排序方式: 共有3370条查询结果,搜索用时 15 毫秒
1.
Insects use dormancy to survive adverse conditions. Brown locust Locustana pardalina (Walk.) eggs offer a convenient model to study dormancy (diapause and quiescence), which contributes to their survival under arid conditions. The metabolic rates of developing nondiapause, diapause and quiescent eggs are compared in the present study using closed‐system respirometry. The embryo becomes committed to continue development and hatch or to enter diapause 6 days after the eggs are placed on moist soil. The metabolic rate of nondiapause eggs increases exponentially until hatching, whereas that of diapause eggs is low and stable. The metabolic rate of diapause laboratory eggs (1.9 ± 0.6 µL CO2 mg?1 h?1) is significantly higher than that of field eggs (0.5 ± 0.3 µL CO2 mg?1 h?1), although the ranges of metabolic rate overlap and the embryos are all in late anatrepsis. The metabolic rate of quiescent eggs is similar to that of diapause eggs but decreases with time. Low metabolic rates during arrested development allow eggs to persist over long periods before hatching.  相似文献   
2.
3.
Adoption of reduced‐impact logging (RIL) methods could reduce CO2 emissions by 30–50% across at least 20% of remaining tropical forests. We developed two cost effective and robust indices for comparing the climate benefits (reduced CO2 emissions) due to RIL. The indices correct for variability in the volume of commercial timber among concessions. We determined that a correction for variability in terrain slope was not needed. We found that concessions certified by the Forest Stewardship Council (FSC, N = 3), when compared with noncertified concessions (= 6), did not have lower overall CO2 emissions from logging activity (felling, skidding, and hauling). On the other hand, FSC certified concessions did have lower emissions from one type of logging impact (skidding), and we found evidence of a range of improved practices using other field metrics. One explanation of these results may be that FSC criteria and indicators, and associated RIL practices, were not designed to achieve overall emissions reductions. Also, commonly used field metrics are not reliable proxies for overall logging emissions performance. Furthermore, the simple distinction between certified and noncertified concessions does not fully represent the complex history of investments in improved logging practices. To clarify the relationship between RIL and emissions reductions, we propose the more explicit term ‘RIL‐C’ to refer to the subset of RIL practices that can be defined by quantified thresholds and that result in measurable emissions reductions. If tropical forest certification is to be linked with CO2 emissions reductions, certification standards need to explicitly require RIL‐C practices.  相似文献   
4.
5.
Parasites could differentially impact intraspecific host lineages due to genetic, phenotypic, ecological, or behavioural differences between the lineages, or the development of reproductive isolation between them. Batrachomyia (Diptera: Chloropidae) are flies that exclusively parasitize Australian frogs, and in the Wet Tropics rainforest of north‐east Australia larvae are largely restricted to the green‐eyed tree frog Litoria genimaculata (Anura: Hylidae). This frog species consists of two highly divergent genetic lineages that overlap in two nearby, but independent, contact zones. At one contact zone there has been extensive phenotypic divergence and speciation between the lineages whereas, at the other contact relatively lower levels of phenotypic divergence and reproductive isolation suggest that speciation has not occurred. In the present study we tested: (1) whether the deep phylogeographic divergence between northern and southern host populations is mirrored by congruent genetic structuring in the parasite populations and (2) whether the host lineages are differentially impacted by parasitism. We found that the two divergent frog lineages are parasitized by a single lineage of Batrachomyia, which exhibits strikingly little phylogeographic structuring. We found a significant difference in Batrachomyia prevalence between the host lineages at mixed lineage sites in both contact zones, with the magnitude and direction of this effect being consistent in both. The pattern did not differ between the two contacts even though recent phenotypic divergence and speciation has occurred between the lineages at one contact but not the other. Taken together, this suggests a fundamental difference in susceptibility between the genetically divergent host lineages. Using weight relative to body length as a measure of body condition, we found no differential impact of parasitism on the body condition of each host lineage, and no evidence that parasitism impacts the body condition of the host in general. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 593–603.  相似文献   
6.
7.
8.
9.
Abstract Increasing atmospheric CO2 may result in alleviation of salinity stress in salt-sensitive plants. In order to assess the effect of enriched CO2 on salinity stress in Andropogon glomeratus, a C4 non-halophyte found in the higher regions of salt marshes, plants were grown at 350, 500, and 650 cm3 m?3 CO2 with 0 or 100 mol m?3 NaCl watering treatments. Increases in leaf area and biomass with increasing CO2 were measured in salt-stressed plants, while decreases in these same parameters were measured in non-salt-stressed plants. Tillering increased substantially with increasing CO2 in salt-stressed plants, resulting in the increased biomass. Six weeks following initiation of treatments, there was no difference in photosynthesis on a leaf area basis with increasing CO2 in salt-stressed plants, although short-term increases probably occurred. Stomatal conductance decreased with increasing CO2 in salt-stressed plants, resulting in higher water-use efficiency, and may have improved the diurnal water status of the plants. Concentrations of Na+ and Cl? were higher in salt stressed-plants while the converse was found for K +. There were no differences in leaf ion content between CO2 treatments in the salt-stressed plants. Decreases in photosynthesis in salt-stressed plants occurred primarily as a result of decreased internal (non-stomatal) conductance.  相似文献   
10.
Abstract Crassulacean acid metabolism (CAM) was studied in mixotrophic callus tissue cultures of Kalanchoë blossfeldiana hybr. Montezuma and compared with plants propagated from the calli. The ultrastructural properties of the green callus cells are similar to mesophyll cells of CAM plants except that occasionally abnormal mitochondria were observed. There was permanent net CO2 output by the calli in light and darkness, which was lower in darkness than in light. The calli exhibited a diurnal rhythm of malic acid, with accumulation during the night and depletion during the day. 14C previously incorporated by dark CO2 fixation into malate was transferred upon subsequent illumination into end products of photosynthesis. All these data indicate that CAM operates in the calli tissue. The results revealed that the capacity for CAM is obviously lower in the calli compared with plantlets developing from the calli, or with ‘adult’ plants. The data suggest also that CAM in the calli was not limited by the activities of CAM enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号